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An 11-segment planar model of a speed skater’s body was developed and computerized. The solution of the
inverse dynamics problem made it possible to determine the net joint moments, reaction moments and the
mechanical energy expenditures. The modelling of different variants of skating on the straight parts of the circuit
revealed the most efficient one to be the run without arm swing, with the sideward push-off and without an active

swing by the recovery leg.

Kej/words: Inverse dynamics problem, mechanical energy expenditures, modelling, speed skating, sport

technique.

Introduction

This study is concerned with speed skating. Termin-
ology referring to the phases of the skating action must
be defined at the outset:

o Phase 1 (free skate): the phase starting from the
instant of the push-off skate lifting from the ice and
ending when the swing thigh is vertical.

o Phase 2 (single support push-off) : the phase starting
from the position when the swing thigh is vertical
and ending when the swing foot touches the ice.

e Phase 3 (double support pusk): the phase starting
from the swing foot touching the ice and ending
with the lifting of the push-off skate from the ice. In
this phase, the push-off leg is extended at the hip,
knee and ankle joints.

Previous research

The techniques of speed skating have been investigated
by a number of authors. Sokolov (1970) analysed the
leading elements of the skating technique. Doctorevitch

* To whom all correspondence should be addressed.
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(1976) studied the phase structure of step and support
reactions. Van Ingen Schenau (1981) determined the
coefficients of aerodynamic resistance of the skater’s
body at touch-down and calculated the work done in the
extension of the push-off leg. De Boer (1986) and
Koning ez al. (1991a, b) investigated the electrical
activity and velocity of leg muscle contraction. At the
present time, it is possible to state that, although the
speed-skating technique has been well investigated, the
most efficient technique has still to be established.
Oxygen consumption reaches 50-60 ml kg~! min~
(Ekblom et al., 1967; Di Prampero et al., 1976) at speed-
skating velocities of 9.5-10.5 m s~'. According to Kan-
dow et al. (1987), the standard deviation of oxygen
consumption can reach 8 mlkg~! min~!. Van Ingen
Schenau (1981) noted differences in oxygen consump-
tion between elite skaters (body mass 72kg) of
3mlkg 'min~'. In a group of well-trained skaters
(body mass 72 kg), differences in oxygen consumption
of 8 ml kg~! min~! were noted. It is possible to state that
at the same skating velocity, metabolic energy expendi-
ture can vary from 400 to 1000 m!l min~!. One reason for
the difference in oxygen consumption between skaters is
the mechanical efficiency of the technique. The most
effective technique in cyclic locomotion is such that a
greater speed is achieved with low mechanical energy
expenditure and hence less metabolic energy.
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The present study

The present paper is concerned with the mechanical
energy expenditure of the skating technique on the
straights as influenced by the body weight shift on the
support leg in phase 3, air resistance and the swing
activity of the free leg. A schematic representation of the
modelling procedure is presented in Fig. 1.

The study was undertaken in three consecutive
stages. First, we developed a two-dimensional
mechanical model of the speed-skating technique. The
next stage was based on experiments to determine the
aerodynamic forces (these are not described in full in
this paper) and on the kinematics data of Doctorevitch
(1976). From the known average velocities in the three
phases and the positions of the skater’s body at the
boundaries of the phases, the instantaneous velocities
and accelerations were estimated using cubic spline
functions. Finally, having determined and analysed the
reference variants of the speed-skating technique, the
third stage involved the solution of the inverse dynamics
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problem and the comparison of possible variants of
speed-skating technique.

The planar speed-skating model

Mechanical model

An 11-segment planar model of the skater’s body was
developed, which includes torso—head, thigh, shank,
foot—skate, upper arm and lower arm-hand segments.
Mass-inertial and anthropomorphic data for these
segments are given in Tablel. For simplicity, in
calculating the moment of inertia, the torso and head
were modelled as one spherical segment. Body segments
were assumed to be rigid and the joints to be ideal.
Figure 2 presents the general view of the model and also
the positive direction of angles and joint morments.
The position of the skater’s body is defined by 13 co-
ordinates (see Fig. 2): :
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Figure 1 A schematic representation of the speed-skating model.
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Modelling of rational variants

The equation of motion based on Lagrange-11 equations
can be written as follows:

d[adL JaL
al7z-me o

where the coordinates 4, are:

o Y% Z%=hip-joint co-ordinates (the pole of the
model).

® o, i, 7» 1> &, 0,=the angles to the vertical of
corresponding body segments;i=1, 2, where suffix
i=1 stands for the right leg and i=2 for the left leg.
In all the positions of a speed skater studied, the
right leg is the push-off (support) leg and the left leg
is the swing-support leg.

e [ =the difference between the kinetic and potential
energy of the skater’s body.

¢ . O, =the magnitude of the generalized force.

Using the expression for the kinetic and potential
energy of the body segments, and including the data
connected with the calculation of derivatives d/dr
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[0L/84,] and OL|dA, , we obtain the differential equations
of the model investigated. It is convenient to present
these expressions in a matrix form (Formalsky, 1982):

AxX+BxX?*+g Cxsind)=D*W+ExR (2)

where 13+ 13 matrices 4, B, C, D, E and vectors X, A2,
sin(A), W, R are given in Appendix 1; g is gravitational
acceleration. - :

Vector R contains the aerodynamic resistance forces
of the speed skater’s body (—F?) and the segments
(—F?) torso plus head, thigh (left, right), shank includ-
ing foot and skate (left, right). The aerodynamic drag
forces of the arms are omitted. The magnitude of each
aerodynamic force (— F}') acting on the segments was
defined by the equation:

F;‘:Si*S"*[0.5*S*p*(Ak*vz+Bk*v+Ck)]*'vz- 3)

where p is the density of the air (dependent on the
temperature and pressure); S; is the frontal area of the

Table 1 Mass-inertial characteristics of model (body mass 78.7 kg, height 180 cm)

Segments
Torso Foot Lower
plus plus Upper arm
Variable head Thigh Shank skate arm plus hand
Mass (kg) 36.3 13.4 3.46 1.70 1.74 1.73
Moment of inertia (kg m~2) 2.59 0.270 0.04 0.0042 0.010 0.0093
Position of segment’s mass centre from the proxi- 0.30 0.16 0.178 0.074 0.10 0.22
mal joint (m)

Segment length (m) _ 0.66 0.43 0.40 0.21 0.35 0.38

Note: The position of the torso centre of mass is calculated from the hip joint; the length of the torso is equal to the distance from the hip joint to the
shoulder joint. The centre of mass position of the thigh is calculated from the hip joint, that of the shank from the knee joint, and that of the foot
from the ankle joint. The centre of mass of the upper arm is calculated from the shoulder joint and the lower arm from the elbow joint.

Mass and inertial characteristics of segments calculated according to Zatsiorsky ez al. (1981). Moment of inertia about torso of mass calculated
according to the formula for an ellipsoid:

o __ "r 4, 34 252
7 = g (3 +69 +20%7]

where a is approximately 0.395 m and b 0.215 m; mass mp=43.3 kg (torso+head + arms).

Figure 2 A planar model of
the speed skater’s body. (a)
The positive direction of
angular displacement — ; (b)
the positive direction of the
net joint moments «>.
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corresponding segment (j=1-5); S is the frontal area of
the skater’s body at touch-down; v is the speed of the
centre of mass of the segment (assumed to be equal to the
speed of the model pole~-the hip joint- plus the

opposing wind speed). In the square brackets of -

equation (3), the aerodynamic force for the whole
skater’s body (— F?) is presented. The product S;* S~!
is the relative frontal area of the j-th segment. Equation
(3) assumes that the aerodynamic forces acting on each
segment are proportional to that segment’s frontal area.

The terms in parentheses (A, *v?>+B, v+ C,) define
the coefficient of the aerodynamic resistance for the
speed skater’s body, C,. A, B,, C, are the coefficients of
the regression equation describing the dependence of G,
on the skater’s speed. Suffix k stands for the form of
touch-down. The coefficients A,, B, and C, depend on
the speed and on the selected variant of touch-down. It
should be noted that the values S and S| are dependent
on the angles of the joints and on body dimensions. The
coefficients A, B,, C, for calculating C, and the
coeflicients of the regressioan equations for calculating
each segment’s frontal area are given in Tables 4 and 5,
respectively, in Appendix 2.

In order to estimate the mechanical energy expendi-
ture of different variants of skating on the straight, the
inverse dynamics problem was solved.

The efficiencies of concentric and eccentric mechanic-
al work differ from between 109%, and 3009, (Zatsiorsky
et al., 1986). In the mechanical model investigated,
where the muscles at the joints were replaced by the net
moments, the physiological efficiencies of ‘positive’ and
‘negative’ mechanical work were assumed to be identi-
cal. Although this might be considered a limitation of
the model, there is, at present, no generally agreed
method of estimating metabolic work. The mechanical
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work W was obtained as the sum of the absolute value of
the work done by the net moment for each joint
mentioned (Zatsiorsky et al., 1982; Formalsky, 1982;
Beletsky, 1984):

5 2 N $hm
w=33 X |M} dg] C)
1=1i=1 m=2 Jg}™"!

where M™ is the magnitude of the net moment for the
I-th joint in the m-th point of the step, and @™ is the
joint angle. For the hip joint, ¢} =n— (™ + f™); for the
knee, ¢P"=n—(f"+y™); for the ankle joint, ¢} =
n—(nP +9™; for the shoulder joint, ¢pP™ =n—(a™+ £F);
for the elbow joint, ¢?™=n—(—E™+6™); where suffix
i=1, 2 stands for the joint (right or left) and m=2to N
(where N is the number of points in trajectory);
n=3.1416.

The work output per metre of distance covered
(coefficient K, see below) was used to estimate the
technique’s effectiveness. The validity of the planar
simplication of the three-dimensional motion of the
skater is discussed in Appendix 3.

Kinematic parameters of the speed skater model

The data given by Doctorevitch (1976) were used to
define the kinematic characteristics of the speed skater’s
run. The stroke length, the durations of the phases and
the average speed in the phases were defined in these
investigations. Summary data are given in Table 2.
The cubic spline method (Alberg et al., 1967) was
used to estimate the velocities of the skater’s body
segments. The speed skater’s boundary positions (see
Fig. 3), corresponding to the beginning of the different
phases of the run, were determined in accordance with

Table 2 Kinematic characteristics of speed skating and the model on the straight part of the track

Kinematics of running Rhythm of running
Step Average Free Single Double
length Time speed skate support support
Manner of running (m) (s) (ms™) (%) (t%) (t%)
Data of Doctorevitch (1976) _
Sprint events '5.05 0.42 12.0 23 49 28
7.90 0.64 129
Running on the middle distances 6.00 0.50 11.0 25 50 25
8.40 0.70 12.1
Running on the long distances 7.00 0.60 10.8 28 46 26
) 9.20 0.80 11.5
Model 80 push-offs per minute 8.1 0.742 10.9 27 48 25
Model 85 push-offs per minute 7.77 0.700 11.1 314 - 371 31.5

Note : Rhythm of running obtained by dividing the time of phase by the time of step.
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Running with active swing

Free Double support

push-off

Single support

skate push-off

Running with slow swing

the data given in Table 2. In order that the boundary
conditions between phases did not significantly
influence the calculation of the velocities and acceler-
ations, the interpolation spline was based on nine knots
for each joint. In Fig. 3, stick figures are presented only
for the stroke investigated. For calculating kinematic
parameters, three phases were added to the right and to
the left from the stroke to obtain nine knots in the j )omt s
trajectory.

() Jump variant (VDP-1)
GOOM

800

400

200

6 10 20 SO 40 &0 60 70 86 90 100
Time of double support phase(%)

®) Smooth variant (VDP-2)

800

600

400
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4] © 20 30 40 [.{¢] 80 70 80 $0 100
Time of double support phase(%)

Figure 4 Vertical component (Rz) of the reaction force on
the push-off (x) and support (<) leg in the double support
phase.

Support skate
Sideward push-off
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Backside push-off

Wy 2 AT

Figure 3 Variants of the
technique when running on
the straight parts of the
circuit.

Simulation of the double support phase

Any system of equations has a unique solution if the
number of unknowns is identical to the number of
equations. The vector W has 11 unknowns, of which 10
are joint moments and Mr, is the reaction moment on
the push-off leg. In vector R, there are five unknowns:
Ry,, Rz, for the push-off leg and Mr,, Ry,, Rz, for the
support leg. Altogether, there are 13 equations and 16
unknowns: 10 net joint moments, 2 reaction moments
and 4 reaction force components, of which 2 are along
the Y axis and two along the Z axis (the directions of the
Y and Z axes are shown in Fig. 2).

The given system of equations can be solved analytic-
ally only for the single support phase. In order to solve
the task generally — that is, to obtain moments not only
in the single support phase but in the double support
phase as well (when both legs are on the ice)—it is
necessary to determine the reaction moment and force
components on both legs.

To obtain the force components Rz on the push-off
and support legs, the following experiment was per-
formed. The speed skater simulated the run on the
straight on a skateboard. Two force platforms under the
skateboard measured the force components in the
double support phase. In this experiment, four speed
skaters took part, each making 40 pushing attempts in
the double support phase. The variation of the reaction
force components on both legs is shown in Fig. 4.

According to the experiment on the skateboard, two
variants of the double support phase were defined. The
moving of the body weight to the support leg at the end
of the double support phase (Fig. 4a) is called the ‘jump’
double support push-off; and the weight shift to the
support leg at the beginning of the double support phase
is called the ‘smooth’ push-off (Fig. 4b).

In calculating the ground reaction force, these two

~ variants of executing the body movements during the

double support phase have been simulated (see Fig. 5).
The shift of the body weight to the support leg in the
way shown in the lower line in Fig. 5a is called the first
variant of the double support phase, VDP-1 (the ‘jump’
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Figure5 (a) Vertical component (Rz) of the reaction force on the support leg in the model; (b) horizontal component (Ry) of the
reaction force in the model; (c) reaction moment (Mr) on the support leg.
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variant of the double support phase), whereas that
according to the upper line is the ‘smooth’ variant of the
double support push-off, VDP-2. For these two variants
of the double support phase, the vertical Rz and
horizontal Ry components (see Fig. 5b) of the reaction
force are given by the formulae:

0.70

Figure 6 Joint angles where
the right leg is the support
push-off leg and the left leg is
the swing-support leg.

RzPP1=(0.00006703 * 7>+ 0.000551 * T

+0.0122) * weight (5)
Rz)PP2=(—0.00006793 1>+ 0.015178+1

—0.0442) » weight (6)

Ry,=Rz)PPHVPP2, friction coefficient of ice  (7)
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Figure 7 Joint moments and the effect of the double support push-off variant
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Figure 8 Joint moments and the effect of the double support push-off variant
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Mechanical work (J)
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Figuie 9 The mechanical work at the joints and the effect of the variant of the double support phase. Total work=375.5]

(+232.8, —141.7, VDP-1); 334 J (+197.8, —136.2, VDP-2).

where t=1¢,/T (T is the duration of the double support
phase, t; is the instantaneous time), and the friction
coefficient of ice in this model is equal to 0.005. It is
necessary to point out that equation (7) is suitable only
for the gliding skate.

The reaction moment on the support leg (Mr,, see
Fig. 5¢) was calculated assuming that the point of force
application (point of zero-moment, ZMP) lies in front of
the ankle joint at a distance of 0.05 m along the surface of
the blade:

Mr,=./[Ry?+ Rz%]* ZMP (8)

where ZMP is the position of the zero-moment point
(point of force application) relative to the ankle joint.

Results and discussion

Comparative analysis of the push-off efficiency in two
variants of the double support phase

To estimate the influence of the way of performing the
double support phase on the joint moments and,
consequently, on mechanical energy expenditure, two
variants of the double support push-off (VDP-1 and
VDP-2, step frequency 85 push-offs per minute) were
considered (the ways of modelling body weight shifts on
the support leg are illustrated in Fig. 5a—c).

The average speed in the step is 11.1 m s~L. The free
skate phase ends at 0.22 s; the single support phase
begins at 0.22 s and ends at 0.48 s; the double support

phase begins at 0.48 s and ends at 0.70 s. Figure 6 shows
the angular kinematics of the stroke investigated.

The influence of the possible variants of the double
support phase on the moments of the push-off and
swing-support leg is shown in Figs 7 and 8. The joint
moments (push-off and swing-support legs) do not
depend on the modelling variant of the double support
phase (VDP-1 or VDP-2) in the free skate and single
support push-off phases (phases 1 and 2 in Figs 7 and 8).
Hence, in the upper panels of Figs 7 and 8, there are only
moment diagrams for skating with the VDP-1 variant of
the double support phase.

The weight shift on the support leg according to the
smooth variant (VDP-2) decreases the magnitude of the
moments at the hip and ankle joints of the push-off leg
(see Fig. 7). The hip moment decreases approximately
four times in VDP-2 relative to VDP-1. The differences
in the ankle joint moment reach a value of 35 N-m. In
the variants of the double support phase investigated,
the knee joint moment decreased from 50 to —20 N-m
(VDP-1) or 10 N-m (VDP-2). At this period of the
double support phase, the angular velocity of knee
extension reaches a value of 4-5 rad s~!. Hence the
quadriceps femoris cannot produce a great force, and the.
negative value of the knee joint moment means that the
moments of the (mostly two-joint) hamstring and
gastrocnemius muscles are greater than the moment
produced by the quadriceps femoris.

The moments Q,, U, and P, in the support leg joints
are greater in VDP-2 then when the first.variant of the
double support phase (VDP-1) takes places (see Fig. 8).
In the variants of running simulated with two different
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Figure 13 A schematic representation of the different simulations for speed skating.

weight shifts on the support leg in phase 3, the run under
the VDP-2 is more effective: at a frequency of 85 steps
per min, the work output per metre decreases from 48.2
to 43.0 J m~! (under VDP-2) or by 10.8% (see Fig. 9).

So the ‘smooth’ double support push-off (VDP-2)
seems to be more effective than the ‘jump’ (VDP-1).
This can be explained by the fact that the mechanical
work (equation 4) is the product of two variables: the
joint moment and angular displacement. The angular
displacement of the support leg joints in phase 3 is
negligible relative to the joint displacements of the
push-off leg (see Fig. 6), so the mechanical work in the
support leg joints in the double support phase is
approximately equal to zero in VDP-1 and VDP-2. The
decrease in the work of the push-off leg decreases the
total mechanical work in the step. Under the same speed
of running, the skater who ‘loads’ the support leg earlier,
expends less mechanical energy.

The influence of aerodynamic drag on power and
mechanical energy expenditure of the speed skater

The aerodynamic forces acting on the segments are
shown in Figs 10 and 11, the average speed in the step
being about 11.1 m s~!. The drag forces acting on the
segments are presented in Fig. 10, where the velocity of
the opposing wind V is equal to zero. If the velocity of

the wind increases to 8 ms~!, then the drag force
increases in the manner presented in Fig. 11. In that
case, the velocity of the hip joint in phase 1 changes: the
increase in drag force should decrease the speed in the
free-skate phase. The impulse of drag forces according
to Fig. 11 in phase 1 (0-0.22s) is 12N s™!, so the
average speed of the skater (body mass 78.7 kg) de-
creases to the end of the free-skate phase by 0.15 m s,

The effect of wind speed on the mechanical work in
the joints is presented in Fig. 12. The rise in wind speed
from O to 8 m s~ increases the mechanical work in the
step from 375 to 396 ] (VDP-1) and decreases the
technique efficiency of skating by 5.89.

The simulation of different wversions of the running
technigue on the straight part of the circuit and the
estimation of their efficiency

For this purpose, 10 new middle-stroke running ver-
sions were considered. They are numbered in the
columns of Table 3 and Fig. 13. The main differences in
touch-down positions concern the position of the push
leg and the swing leg relative to the hip joint. The
average speed (10.9 m s™!) of the hip joint, the stride
frequency of 80 strokes per min and phase structure
remain the same in all 10 versions, with the wind speed
equal to zero. A general overview of the versions
considered is presented in Fig. 13.
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Table 3 Mechanical energy expenditure (J) on the straight part of the track (80 strokes per min)

Running with sideward push-off with active swing

Work and Variant 1: Variant 2: Variant 3: Variant 4:
errors Hands on the Hands on the Single arm Single arm
of model back, VDP-1 back, VDP-2 swing, VDP-1 swing, VDP-2
Mechanical work in step® .
total 393 312 419 334
positive ' 252 197 259 200
negative : 141 115 160 134
Work of aerodynamic forces 138 138 150 150
The error of the planar model (%) 6.8 17.9 12.3 24.8
K(Jm™Y) - : 48.5 38.5 51.7 41.3
Running with sideward push-off with active swing
Work and Variant 5: Variant 6: Variant 7: Variant 8:
errors Hands on the Hands on the Single arm Single arm
of model back, VDP-1 back, VDP-2 swing, VDP-1 swing, VDP-2
Mechanical work in step®
total 462 351 487 375
positive 271 206 ‘ 277 211
negative 191 145 211 165
Work of aerodynamic forces 138 138 150 150
The error of the planar model (%) 12.2 22.2 17.2 27.7
K({Jm™) 57.0 43.4 60.1 423
Running with sideward push-off without active swing
Work and Variant 9: Variant 10: )
errors Hands on the Hands on the
of model back, VDP-1 back, VDP-2
Mechanical work in step®
total 262 239
positive 188 “171
negative 73.5 68.0
Work of aerodynamic forces 139 139
The error of the planar model (%) 9.2 14.9
K({Jm™" 32.3 29.5

Noze: The work done against acrodynamic resistance was obtained by multiplying resistance force by the step length.

2 Total, positive and negative work at the joints.

The model assumes constant length of segments
(rigid bodies), so in simulating procedures when the
‘back-side’ push-off occurs, the angle of thigh inclina-
tion to the vertical (f,; see Fig. 2) alters, until the toe of
the blade touches the ice at the end of the double support
phase (see Fig. 3). )

The double support push-off is modelled by two
possible variants of the body weight shift on the support
leg (see Fig. 5). The estimation of the efficiency of the
technique is defined by the coefficient K (the work done
per metre of the distance travelled). The total mechanic-
al work per stroke and the coefficient K are shown in
Table 3. The total mechanical energy expenditure in the
back-side push-off (variants 5-8) in comparison with
sideward push-off (variants 1-4) increases by 179,
under VDP-1 and by 139, under VDP-2.

The amplitude and ‘activity’ of motion of the swing

leg (variants 1-8 vs 9—-10) essentially affect the reaction
force component along the Y axis. This is explained by
the fact that the direction of the centre of mass
acceleration of the swing leg does not coincide with the
direction of the support leg centre of mass. When the
swing leg touches the ice (deceleration), the negative
forces act on the skater’s centre of mass. Hence the push-
off leg develops more mechanical work to maintain the
given velocity in the step.

For running with an active swing, the mechanical
work equals 393 J (variant 1, VDP-1) and 312 J (variant
2, VDP-2); skating with back-side push-off increases
the mechanical work in the joints to 462 J (variant 5,
VDP-1) and 350 J (variant 6, VDP-2). When skating
without an active leg swing and with sideward push-off
(variants 9 and 10), the mechanical work in the push-off
leg joints equals 262 ] (variant 9, VDP-1) and 239]
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(variant 10, VDP-2). In all variants of running, the
mechanical efficiency rises by 20-309%, if variants with
VDP-2 are used (compare pairs 1-2, 3—4, 5~6, etc.).

The energy used for the arm swing does not exceed
5% of the total energy expenditure and does not
essentially affect the general efficiency (variant 1-2 vs
3—4 and 5-6 vs 7-8). The swinging of the arm increases
the energy expenditure per metre of distance travelled
by 3 ] m~! under all variants.

The most effective technique at the step frequency
studied (80 steps per min) is the run without arms
swinging, with a sideward push-off and without an
active swing by the recovery leg (variant 10, K=
29.5Tm™Y).

Conclusions

The analysis of the movement of a speed skater on the
straight part of the circuit on the basis of a planar
11-segment mechanical model has shown:

1. The system of equations describing the movement
of a speed skater on the straight part of the lap has a
unique solution for the single support position,
while in the double support phase the system is
indeterminate.

2. Theuse of the second variant of the double support
push-off (VDP-2) decreases the mechanical energy
expenditure per stroke by 10~30%,. Therefore, it is
recommended that the skater should place the
recovery leg on the ice and ‘load’ it as early as
possible. -

3. The rise of opposing wind speed from0to8 m s~
increases the average air resistance force from ~ 20
to ~55 N and decreases the technique efficiency
by 5.8%. The total mechanical energy éxpenditure
increases with the rise of air resistance by 11 J for
the swing hip and by 7 J for the push-off ankle.

4. Sideward push-off with a small magnitude of the
swing movement (variants 9 and 10, Table 3)
reduces the negative value of the horizontal
reaction force in the final part of the single support
push-off. The mechanical energy expenditure in
the step decreases in this case by a factor of 1.5.

5. The most efficient technique (variant 10, Table 3)
was found to be the run without arm swing, with a
sideward push-off and without an active swing by
the recovery leg, which reduces the mechanical
work rate to 29.5 Jm™!.
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Aﬁpendix 1

d 1=[?0; 203 d, Bp Bz, ‘}"‘1, '5;2: fils ﬁzi En yp Ez, Hz]T

* sin(a)=[0, 1 sin(a), sm(ﬂl), sm(liz), sm(vx), sm(?z), sin(n,), sin(r,), sin(&,), sin(0,), sin(&,), sin(8,)]™
® 12=[0, 0, d?, B]) ,32, 725 925 1its 135 én 13 éz: 2]

e W= [0 0 QI, Qz: U[: Uz} Pp Pz: Mrp Sp Tys st Tz]

® R= [Ry,,Rzl,Mrz,Ryz,Rzz,'- —FT’ “F'rm: Fm:"' Shi 3 FShz’O O]

¢ DIAG C=[0, m, —A,, B, B, C,, Cl, K, Kg, Dy, Ky, D, K]

where:

Q,=the hip joint moments (see Fig. 2), U, the knee joint moments, P, the ankle joint moments, S; the shoulder joint moments and z;
the elbow joint moments; '

Ry,, Rz;=the horizontal and vertical reaction force components;

Mr,=the reaction moments relative to the ankle joint;

F?=air resistance (with no suffix: air resistance of the skater’s body; with suffices indicating: T, air resistance of torso plus head; T,
air resistance of thigh; sh, air resistance of shank plus foot plus skate);

m="body mass of skater.

Cocefficients of matrix A, B, C, D, E _
Ki=mi*R; : Kp=mp*R, : Kg=mg,*Rg, : Kp=mzxRg : Ky,=my,*Ry, : Kj,=m *R,,

[ ]
* P= Kn+l,n,*(m5h+m,,-) : Py=Kg +mpxLg, : Py=Ky,+my*Ly, : P,=Kp+2%Lox(m_ +my)
¢ A,=P,: A;=L x(Ky,+my *Ly) : A;=F+2+Lix(my +m.,)
® By=Knp,+Lpy*(mg+myg) 1 By=Lyyx(Kgy+mpxLg) 1 By=Jp,+ L *(mg, +my)
® C=Kg+mp*Lg : C=F5+me*L},
® D =Ky, +my,*Ly, : Dy=F,,+m,*L},
¢ Fr=Jr+m*R} ¢ Fu=Fh +mm Ry, : Fa=Th+ma*RE,  Fo=Fp+me*RE ¢ Fu=Fh +mu*RE, : F=F.+
my,*RE,
where:

m=segment mass;

F°=the moment of inertia of the segment relative to its centre of mass (or centre of mass of torso for ¥2);
segment suffices are: T, torso plus head; Th, thigh; sh, shank; F, foot; ua, upper arm; La, lower arm plus hand;
L =segment length with suffices as above except L is torso length from hips to shoulders;

R =distance between the proximal joint (hip) and the torso plus head centre of mass;

R, =distance between the proximal joint (hip) and the thigh centre of mass;

Ry, =distance between the proximal joint (knee) and the shank centre of mass;

Ry =distance between the proximal joint (ankle) and the foot centre of mass;

Ry, =distance between the proximal joint (shoulder) and the upper arm centre of mass;

R, ,=distance between the proximal joint (elbow) and the lower arm plus hand centre of mass.

Coefficients of matrix A (matrix A is symmetrical)

* A1, 1)=m : A(1,2)=0 : A1, 3)=P,*cos(x) : A(l,4)=P xcos(f,) : A(1,5)=P*cos(f,) : A1, 6)=
—P,*xcos(y,) : AQ1, Ty= —P,*cos(y,) : A(l, 8)=Kg*cos(y,) : A(1,9)=Kgxcos(n,) : A(1, 10)=P,*xcos(¢,) : A1, 11)=
K xcos(0)) : A1, 12)=Py=xcos({,) : A(1, 13)=K,, *cos(h,)

® A(2,2)=m : A(2,3)=—P,ssin(a) : AQ2,4)=P »sin(B)) : A(2,5)=P xsin(B,) : A(2,6)=P,*sin(y,) : AQ2,7)=
P,xsin(y,) : A(2, 8)=Kgx*sin(n,) : A2, 9)=Kp*sin(n,) : A2, 10)=Py*sin(¢)) : A2, 11)=K_*sin(8,) : A2, 12)=
Pyxsin(g) : A(2 13)= K, *sin(f,)

® A(3,3)=A4,: A3, 4)=A4(3, 5)=A@3, 6)=A(3, T)=A3, 8= A(3 9)=0 : A3, 10) A,xcos(@+¢&) : AB, 11)=
K «Ly *cos(a+9) A, 12)=A, cos(a+¢,) : A3, 13)=K ,* Ly*cos(e+6,)

* A(4,4)=B,: A4,5)=0: A@4, 6)——B *xcos(y;+ ) 1 A4, 7)=0 : A4, 8)=Kg«Lp,xcos(f,—n,) : A4,9)=
A4, 10)=A(4, 11)=0 : A4, 12)=A(4,13)=0

* A5, 5)=B, : A(5,6)=0 : A5, T)=—B,*cos(y,+f,) : A(5,8)=0 : A(5,9)=Kg+ Ly *xcos(f,—n,) : A(5,10)=
A5, 11Y=A(5, 12)=A(5,13)=0

® A(6,6)=C, : A6, T)=0 : A(6,8)= —Kg*Lg *cos(y,+n,) : A(6, 9)=A(6, 10)=A(6, 11)=A(6, 12)= A(6, 13)=0

¢ A7, N=C, : A(7,8)=0: A(7,9)=—Kp*Lg,*cos(y,+1,) : A(7,10)=A(7, 11)=A(7, 12) A(7,13)=0

* A(8,8)=% : A(8,9)=A(8, 10)=A(8, 11)=A(8, 12)=A(8, 13)=0

* A9,9) =3 : A(9, 10)=A(9, 11)=A(9, 12)=A(9, 13)=0
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e A(10,10)=D, : A(10, 11)=Ky, * Ly, xcos(f,—¢&,) : A(10, 12)=A(10, 13)=0
e A1, 11)=7%, : A(11,12)=A(1, 13)=0

* A(12,12)=D, : A(12,13)=K, * Ly, *cos(6,—¢&,)

e A(13,13)=7,

Coefficients of matrix B (first two columns of matrix B are zero)

® B(1, 3)= —P,*sin(a) : B(1,4)=—P;*sin(f,) : B(1,5)=—P *sin(f,) : B(1, 6)=P,*sin(y,) : B(1,7)=
P,xsin(y,) : B(1, 8)= — Kg#sin(n,) : B(1l,9)=—Kgxsin(y,) : B(1, 10)= —P,*sin(¢)) : B(1, 11)=
— K, *sin(,) : B(1, 12)= —P,*sin(£,) : B(1, 13)= —K, #sin(d,)
® B(2,3)=—P,xcos(e) : B(2,4)=P,xcos(f,) : B(2,5)=P,xcos(f,) : B(2,6)=P,*xcos(y,) : B2, 7)=
P,xcos(y,) : B(2,8)=Kgxcos(y,) : B(2,9)=Kg*cos(n,) : B(2,10)=Pyxcos(¢,) : B(2,11)=K,*cos(f,) : B(2,12)=
Pyxcos(é,) : B(2,13)=K,*cos(f,)

From the third column and row, matrix B is symmetrical except for the following elements:
e B(4,8)=—B(@8,4) : B(5,9)=—B(9,5) : B(10, 11)=—B(11, 10) : B(12, 13)=—B(13, 12)
The non-zero elements of matrix B beginning from the third column and third row are:

® B(3,10)= —A,*sin(a+¢,) : B(3, 11)=—K, * L *sin(e+9,) : B3, 12)-——-A *sin(a+¢;) @ B3, 13)=
— K * Ly xsin(o+6,)

B(4, 6)=B,*sin(y, + f,) : B(4, 8)=Kg* Ly, *sin(f,—1n,)

B(5, 7)=B,*sin(y,+ f,) : B(5, 9)=Kg* Ly, *sin(8,—~1,)

B(6, 8) = Kp* Lg, *sin(y, +1,)

B(7,9)=Kg* Lg *sin(y,+1,)

® B(10,11)= — K, * Ly, *sin(0,~¢))

® B(12,13)=—K * Ly, *sin(0,~¢,)

Coefficients of matrix D
D@3,3)=-—1:D3,4)=-—1:D(3,100=-1:D(3,12)=—1:D(4,3)=—1:D(4,5)= -1 : D(5,4)=—1 : D(5, 6)=—1
D(6,5)=—1:D(6, T)=—1:D(7,6)=—1:D(7,8)=—1 : D8, 7)=—1 : D(8,9)=—-1: D(9,8)=—1:D(10, 10)=—1
D(10,11)=1 : D(11, 11)=—1 : D(12, 12)=—1 : D(12, 13)=1 : D(13, 13)=—1

The other coefficients of matrix D are equal to zero.

Coefficients of matrix E

E(1,1)=1:E(1,4)=1:E1,6)=1:E2,2)=1:EQ2,5)=1: EQ3,7)=Ly*cos(a) : E(4, 1)= Ly,*cos(f,) : E(4, 2)=L, *sin(f,)
E(4, 8)=Rp,*cos(f,) : E(4, 10)=L, xcos(f,) : E(5, 4)=Lp,*cos(B,) : E(5, 5)= L, *sin(B,) : E(5, 9)= Ry *cos(f,)

E(5, 11)= L, *cos(f,) : E(6, 1)=— L, *xcos(y,) : E(6, 2)=Lg, *sin(y,) : E(6, 10)= — Ry, *cos(y,) : E(7, 4)= — L, * cos(y,)
E(7,5)=Lg, *sin(y,) : E(T, 11)= — R, *cos(y,) : E(9, 3)=—1

All other coefficients of matrix E are equal to zero,
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Table 4 Coefficients of regression equation C,=A, xv*+ B, xv+ C,

Voronov et al.

Form of touch-down A,

B, G

Skating on the straight part of the circuit with hands on the back

End of double support phase 0.00193
Beginning of single support take-off phase 0.00338
Beginning of double support phase 0.00240

Skating on the straight part of the circuit with one-arm swing

End of double support phase 0.00405
Beginning of single support take-off phase 0.00513
Beginning of double support phase . 0.00589

Skating on the straight part of the circuit with two-arm swing

End of double support phase 0.00365
Beginning of single support take-off phase 0.00378
Beginning of double support phase 0.00535

—0.05905 1.37320
—0.08871 1.39160
—0.06278 1.19520

—0.10650 1.56370
—0.12930 1.68450
—0.15350 1.95760

—0.09989 1.60350
—0.09950 1.52870
—0.13644 1.90390

Table 5 Coefficients of regression equation S=a+b* X, +c* X, +d* X, +ex X, for calculating

frontal section area of segments in touch-down (m?)

Form of touch-down

Segment - a b c d e
Frontal section of segments in beginning of single support push-off phase

Torso . —0.04900 0.00267 —0.00157 0.00276 - 0.00356
Thigh (take-off) —0.01250 0.00007 —0.00011 0.00054 0.00054
Thigh (swing) 0.02750 0.00052 0.00040 —0.00145 —0.00029
Shank (take-off) —0.05600 -0.00010 0.00057 0.00023 —0.00018
Shank (swing) In this phase of skating, the swing shank is approximately horizontal.
Frontal section of segments in beginning of double support push-off phase

Torso —0.04900 0.00267 —0.00157 0.00276 "~ 0.00356
Thigh (take-off) —0.01250 0.00007 —0.00011 0.00054 ~ 0.00054
Thigh (support) - —0.01250 0.00007 0.00011 —0.00054 —0.00054
Shank (take-off) —0.05600 0.00010 0.00057 0.00023 —0.00018
Shank (support) —0.05600 0.00010 0.00057 0.00023 —0.00018
Frontal section of segments at the end of double support push-off phase

Torso —0.04900 0.00267 —0.00157 0.00276 0.00356
Thigh (take-off) —0.03790 0.00036 0.00032 —0.00043 0.00050
Thigh (support) —~0.01250 0.00007 0.00011 —0.00054 —0.00054
Shank (take-off) —0.02200 0.00029 0.00026 —0.00023 0.00012
Shank (support) —0.05600 ~ 0.00010 0.00057 0.00023 —0.00018

Note: X, =mass of the skater (kg);
X, =length of body (cm);

X, =for torso is width of shoulders (43 cm), for thigh is mean circumference (56 cm), for shank is maximum

circumference (34 cm); .

X, =angle of hip joint (60°) of push-off leg in single support or beginning of double support phase; at the end of
the double support phase, this angle is that of the hip joint of the support leg.
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Appendix 3

The validity of the planar simplification of the three-dimensional model

Speed skating is a typically three-dimensional (3-D) motion. But it is difficult to obtain the skater’s 3-D coordinates in real running
and especially to develop the 3-D model. Itis possible to make some simplifications which will decrease the complexity and the size

" of the model, for example to develop a planar model of skating. When the 3-D model is replaced by a planar one, it is necessary to
estimate the validity of such a substitution.

The push-off forces in real skating and the planar model

First, the main biomechanical features of skating on the straight parts of the circuit will be discussed. In Fig. 14, an upper view of
the 3-D skater model is presented. The forward motion of the skater is possible only when the push-off force, applied to the skate,
is approximately perpendicular to the blade, and the skate is turned around the Z axis in the manner shown in Fig. 14. In such a
variant of the push-off, a positive reaction force component Ry moves the skater forwards and the component Rx is connected with
sideward motion of the skater. The work done by the push-off forces in the step is approximately equal to zero because of the right
angle between the direction of the skate’s motion and the push-off force applied.

In the 3-D model, in the inertial coordinate system, the component Ry differs from the friction force, but in the skate’s XY Z8
system of coordinates, Ry always has a negative value (friction force). In the 2-D (planar) model, the Y axis of the skate (axis along
the blade) and the direction of the Y axis of the inertial system coincide, hence differences between Ry and the friction force appear.

In the planar model, the Rx force component is always equal to zero, so it is not possible to calculate the work done to sideward
skater motion. The Rz force in the 3-D and the 2-D models approximately equals the weight of the skater in phases 1 and 2 and
rapidly decreases in phase 3.

Figure 14 The upper view of the three-dimensional motion
of a skater on the straight parts of the circuit. XYZ, inertial
coordinate system; X°Y®Z:, ‘skate’ coordinate system; R,
reaction support forces.

The balance of mechanical energy in the planar and 3-D models of skating

In the 3-D model, the difference between potential and kinetic energy at the beginning and at the end of the step is equal to the
work done by the aerodynamic, reaction and friction forces and also the work of the joint moments.

In the 3-D model of the skater, the work done by the reaction forces is approximately equal to zero, hence mechanical work in the -
joints plus the work of aerodynamic and friction forces are equal to the change of potential and kinetic energy in the step. When the
velocities of the skater’s centre of mass at the beginning and the end of the step are equal (long-distance running), the difference in
potential and kinetic energy of the skater is equal to zero, so the balance of energy assumes the simple form — the work done by
aerodynamic and friction forces is equal to the mechanical work in the joints.
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In the planar model, the friction forces include a horizontal component of push-off force; hence in the planar model, the balance
of energy consists of the work done by the push-off force Ry component (the work of the Rz component is equal to zero because of
the constant distance between the ankle joint and the ice), joint moments and aerodynamic forces. The work of the Ry force
component can reach a positive value of 100-200 ], so in the planar model there is no equivalence between the work of the joint
moments and the work of the aerodynamic forces. The value of ‘push-off work’ is connected with the absence, in the 2-D model, of
the sideward force Rx. The value of ‘Ry work’ is an approximate estimation of the work done to the sideward motion by moments
in the skater’s joints. The presence of mechanical work of push-off forces in the planar model’s energy balance should not be
considered as a reason to reject the planar simplification of the 3-D motion of the skater.

If it is assumed that the value of the mechanical work of the push-off forces in the planar model is equal to the sideward work of
the skater, then equivalence between the work of the joint moments and aerodynamic forces should occur. Hence the difference
between the work of the aerodynamic forces (W) and the sum of the positive and negative values of the work (W2, WD) of the joint
moments indirectly estimates the accuracy of the planar simplification of skater motion relative to the forward motion of the skater
in the 3-D model. For example, in variant 10 (Table 3), W,—(WZ— WD) is equal to 35.7 J. If this value is divided by the total
mechanical energy in the step (239 ]), the estimation of planar simplification error is obtained, i.e. 14.99%,. The total work in the
joints is used as an estimation of the accuracy of the 2-D model, because this value is the criterion of technique effectiveness and it is
not possible to determine where the planar model error is a positive or negative component of mechanical work. '

In all variants investigated, the difference between the aerodynamic work and the total mechanical work in the joints lies
between 6.8% (variant 1, Table 3)and 27.7% (variant 8, Table 3). A further way to check the accuracy of the planar simplification
of 3-D motion is to investigate the zero-moment point (ZMP) trajectory on the push-off skate. The ZMP motion coincides with
the length of the blade (see Fig. 15). The direction ZMP is from the heel to the toe of the blade, which corresponds to the physics of
the push-off phase. ' ‘
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